9.1 Statistical Surveys —Intro and review of grades 7,8

Population: the complete set of objects or persons that are being considered in a survey

Sample: a subset of the population.

Variables (data): What is being surveyed. (annual income, eye colour, age, height, shoe size...)

- > <u>Quantitative variables</u>: Ones that can be measured numerically. Ex: Age, height, weight.
 - i) <u>Discrete variables</u>: Variables that have separate values (often integer values)

(# of goals in a hockey game, Shoe size 9, 9 1/2, 10...)

ii) <u>Continuous variable</u>: Ones that can be any real number within an interval

(time it takes to run 100m)

> <u>Qualitative variables</u>: Ones that don't have a numerical value. Ex: Eye colour

<u>Census</u>: Statistical survey where <u>all</u> of the population is being surveyed.

Canada has a census every ten years.... Every person in Canada is counted.

<u>Poll</u>: Survey where a **<u>sample</u>** is studied to infer information about the population being studied.

A group of students at a university are asked which night of the week they party the most often

Study: A statistical survey where experts in the field being studied are surveyed

("4 out of 5 Dentists prefer X brand of toothpaste" is a study.)

<u>Bias</u>: Any error involved in a statistical survey. There are several sources... basically... why is it not a good survey....

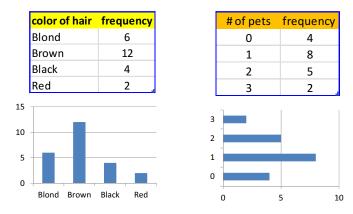
Types of Bias:

- <u>Choosing a sample</u>: Don't poll a Seniors retirement home about what activities Senior Citizens partake in. (Seniors in a home are probably less active than those who still live at home)
- <u>Bad Questions</u>: Vague or misleading such as, "Are you a heavy drinker?" Define Heavy.
- <u>Non Random Sampling</u>: Time and place. Asking random spectators at the Olympic Games in Vancouver if they smoke. (perhaps people interested in sports are less likely to smoke)
- Errors in processing data: tabulating results can lead to an error.
- <u>Errors in Analysis of data</u>: Making assumptions, (like discounting undecided voters before an election ... maybe they are decided... just don't want to tell you)

Look over Activity 1 on P 256. Check your answers.

Practice: P 257 # 1-4, P 259 # 5

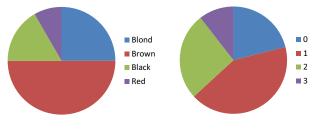
9.2 Statistical Tables and Diagrams


Diagrams may include:

- Tables may include:
- 1. Bar Graphs
- 2. Pie charts/circle graphs
- 3. Broken line graphs
- 4. Histogram
- 5. Box and whiskers plots

- 1. Condensed frequency
- tables
 - 2. Relative frequency tables
 - 3. Grouped data tables

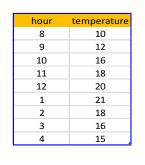
1. Bar graphs – studied in grade 6/7

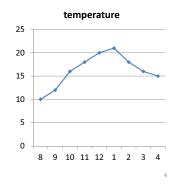

For representing gualitative data or discrete quantitative data

2. Pie/circle Charts - studied in grade 7/8

For representing qualitative data or discrete quantitative data

4. Histograms


For representing <u>quantitative</u> data grouped in classes

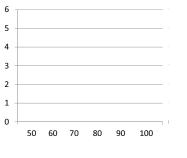

But first we need to look at different types of tables

- Sometimes we will want to group raw data into classes. We will do this when there is a large amount of raw data and if the numbers are distinct (very few repeating data values).
- Each class will be defined by an interval such as: [0, 10 [then [10,20[... etc.
- This is called a grouped data table.

3. Broken line graph - studied in grade 6

For representing data that continually changes over time.

4. Histograms

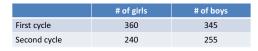

Ex: Consider the marks that 15 students got on a quiz Raw data: 63, 72, 58, 80, 67, 63, 58, 92, 80, 80, 72, 76, 63, 63, 92

Marks	Tally	Frequency	Relative frequency
[50,60[
[60,70[
[70,80[
[80,90[
[90,100]			
Total	15	15	100 ₆

Now we can draw the <u>histogram</u> for the marks of the 15 students

It looks almost like the bar graph, but the intervals are connected

Frequency
2
5
3
3
2
15


7

Practice: Page 266 # 1,2

 9.3 Sampling Techniques When conducting a survey, we can gather the data by: 1. Direct observation (record events or behaviours of people) 2. Face to face interview (in a public place or shopping center) 	 To choose the sample of our population: You have already seen 2 Techniques in grades 7/8 : 1. <u>Simple Random Sampling</u>: Method where we randomly choose the individuals belonging to the sample. (Choose numbers out of a hat)
 Telephone interview (usually faster, efficient) Written questionnaire (to be filled out and returned) Documentary observation (pull from existing data base) Mechanical or electronic instrumentation (scanner in supermarkets, electronic counters) 	 Systematic Random Sampling: Method where we choose a starting individual and then choose every nth individual after that. (Inspecting every 100th TV on an assembly line for quality control)
There are two other techniques: 3. <u>Stratified Sampling</u> : we use it when the population is divided into subgroups called <u>Strata</u> (by personalities, sex, interests, grade level, age groups) We want all proportions of the population to be represented in the sample. $\widetilde{bys} \underbrace{\widetilde{ciris}}_{ciris} \underbrace{\widetilde{ciris}}_{cachers}$	Ex 1: A small school with 400 students has 160 grade 9's, 140 grade 10's, and 100 grade 11's . A sample of 60 students are to be chosen for a survey. How many of each grade should be included?

Ex 2: The following table shows the distribution of the 1200 students in a school.

A sample of 180 students is required, it must be representative of the population. How many girls from the second cycle should be in the sample? Another sampling technique:

<u>4. Cluster sampling:</u> When the population is made up of several similar clusters where there is a lot of variation inside each cluster. (such as grade 9 homerooms)

We then randomly choose some clusters. Each individual in the cluster is surveyed.

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header>	1. Mode (M _o): the most frequent value in the data. Ex 1 (Raw data): 22, 24, 24, 25, 26, 26, 26, 31, 32 Ex 2: Mode is the only measure of central tendency that we can use for qualitative variables.
---	---

3. Mean (\overline{x} **):** /average the sum of the data divided by the number of data.

Ex 2: (Frequency table) find the mean age

Age	Frequency	Total age
12	2	2(12)=24
13	4	4(13)=52
14	3	3(14)=42
Total	9	118

3. Mean (\overline{x} **)**: /average the sum of the data divided by the number of data.

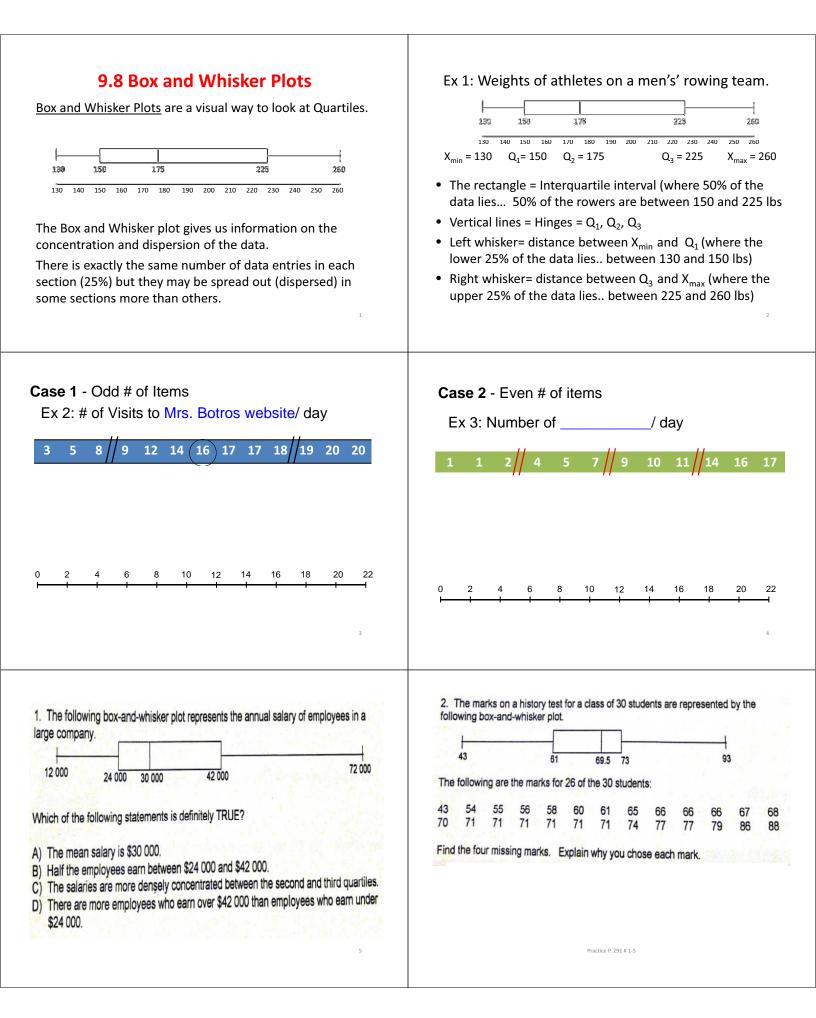
Ex 3: (Grouped data) find the mean height

a)	Height	Frequency	Midpoint	Total height
nt	[100,110[8	105	8(105)=840
	[110,120[2	115	2(115)=230
	[120,130[7	125	7(125)=875
	Total	17		1945

3. Mean (\overline{x} **):** /average the sum of the data divided by the number of data.

Ex 4: (Weighted data) find John's mean mark

Term	Weighting	John's mark
1	0.14	65%
2	0.14	70%
Mid exam	0.075	70%
3	0.285	85%
Final exam	.36	63%


Practice: page 281 # 1-4 page 283 # 5,6 page 284 # 7

b. Characteristic of Position: Quartiles There do you fold a paper into 4 equal parts:	 Ex 1: Consider the ordered set of n = 13 data 1 4 7 8 9 9 11 16 17 19 25 30 30 Q₂ = Q₁ = Q₃ = Q3 =
Ex 2: Consider the following frequency table for the number of pets that students have. $n = M_{0} = \frac{1}{\overline{x}} = \frac{1}{\overline$	Ex 3: (p286#4) In a class of 40 students, if the 1 st quartile is 64, the median is 70 and the 3 rd quartile is 78. What is the maximum number of students that have a mark <u>less</u> than you if you got a) 62% b) 69% c) 76% We recreate the data: 1) 40 students means 10 in each quarter 2) Even n=40 means none of the medians is an actual mark
Practice: page 286 # 1, 2, 3	

9.7 Measures of Dispersion Variation Interval: The interval with the lowestand highest data: $[X_{min}, X_{max}]$ Interquartile Interval: The interval $[Q_1, Q_3]$ 50% of the data lies in this interval	Ex 1: A group of 11 friends are playing a game of bowling. Here are their scores 123 99 139 100 88 86 133 100 153 112 93 We first need to rearrange the data 86 88 93 99 100 100 112 123 133 139 153 n = min = max =
Range (R): The difference between the highest and lowest value. $R = X_{max} - X_{min}$ Interquartile Range (I): The difference between Q_3 and Q_1 I = $Q_3 - Q_1$ Note that range and interquartile range refer to single numerical values	$Q_{1} = Q_{2} = Q_{3} =$ Variation interval = R = Interquartile interval = I = Which score is less than the median but more than Q1?
Ex 2 – Ruler Reaction Time (cm) Boys 6 9 9 9 11 12 14 14 14 14 15 15 17 6 9 9 9 11 12 14 14 14 14 15 15 17 Girls 9 9 10 11 11 11 12 13 14 14 15 15 18 Mean Mode Median Range	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

